Production cross sections of ²⁶¹Ha from ²⁵⁰Cf(¹⁵N,4n) and ²⁴³Am(²²Ne,4n) reactions M.R. Lane, K.E. Gregorich, D.M. Lee, B. Wierczinski*, C.A. McGrath, J.L. Adams, M.B. Hendricks, D.A. Shaughnessy, D.A. Strellis, E.R. Sylwester, P.A. Wilk, and D.C. Hoffman In 1971, Ghiorso et al. produced ²⁶¹Ha by the reactions 250 Cf(15 N,4n) and 249 Bk(16 O,4n). They were able to assign a half-life of 1.8 ± 0.6 s and an α-decay energy of 8.93 MeV. They observed no spontaneous fission (SF) events, and were only able to set an upper limit of 50% for the SF branch of 261 Ha. We have measured the production cross section of ²⁶¹Ha from two different reactions. It was produced in the ²⁵⁰Cf(¹⁵N,4n) reaction at 84-MeV and in the ²⁴³Am(²²Ne,4*n*) reaction at 116-MeV. Our rotating wheel system with a special parent-daughter stepping mode was used to detect α - α correlations between 1.8-s ²⁶¹Ha and 0.65-s ²⁵⁷Lr. We measured thirteen and nine correlations in the two reactions, respectively. The α -decay energies (see Fig. 1) and the lifetimes of these events are consistent with those of ²⁶¹Ha and ²⁵⁷Lr. Based on a 100% α branch, and assuming a 0.4-s gas-iet transport time, we have determined the production cross section of 261 Ha to be 0.60 ± 0.27 nb in the 250Cf(15N,4n) reaction at 84 MeV, and 0.24 ± 0.12 nb in the ²⁴³Am(²²Ne,4n) reaction at 116 MeV. Based on the number of fission events observed in the latter reaction, we have been able to set an upper limit of 18% for the spontaneous fission branch of 261 Ha. ## Footnotes and References *Present address: Department of Nuclear Chemistry, Chalmers University of Technology, Göteborg, Sweden 1. A. Ghiorso, M. Nurmia, K. Eskola, and P. Eskola, Phys. Rev. C 4, 1850 (1971). Fig. 1. Parent-daughter correlations for the reactions 250 Cf + 15 N (top) and 243 Am + 22 Ne (bottom). The α energies of the parent and the daughter for each correlated event are plotted. As a rough guideline, the literature values of the parent (8.93MeV) and daughter (8.80MeV and 8.86MeV) α particle energies are shown by the dotted lines.